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Abstract
The two-band theory of superconductivity of MgB2 with additional six-fermion
interaction is considered. It is shown that a bound state of a spin-singlet Cooper
pair of fermions from one of the bands and an individual fermion from the other
one is possible. The spin- 1

2 triples with zero angular momentum are made up
of three spin- 1

2 fermions with charge e. They are gapped Fermi excitations with
the gap induced by the gaps of the single fermions. Their contribution to the
thermodynamics of the MgB2 superconductors is considered.

1. Introduction

The main goal of the present paper is to explore the bound states of spin-singlet Cooper pairs
and individual electrons in the superconducting phase of MgB2. The three-body bound states
are everywhere in physics, but the study of their role in collective condensed matter behaviour
is still limited. Phase transitions driven by an instability in a three-fermion channel have been
explored. The anomalous three-body scattering amplitude is used as an ansatz to develop a
mechanism of odd-frequency superconductivity [1]. Unlike a BCS theory, the authors involve
a cooperative pairing of electrons and spins. The three-body bound state formation leads to a
gap which is an odd function of frequency. The application to heavy fermion superconductors
is discussed.

In the present paper the interest in this topic is inspired by the anomalous superconducting
properties of MgB2 [2]. The superconductivity in magnesium diboride is s wave, mediated by
electron–phonon coupling. It differs from that of ordinary metallic superconductors in several
ways. Scanning tunnelling microscopy [3] and point contact studies [4] revealed double-peaked
spectra at low temperature that were interpreted as evidence for two-gap superconductivity. Ab
initio calculations suggest that multiple gaps are a consequence of the coupling of distinct
electronic bands [5, 6]. MgB2 has a strongly anisotropic Fermi surface of four separate
sheets that are grouped into two-dimensional σ bands and three-dimensional π bands. The
different energy gaps are associated with the π and σ sheets. The key quantity in phonon-
mediated superconductivity is the Eliashberg function α2(ω)F(ω), where F(ω) is the phonon
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Figure 1. Triangle diagram with three phonon lines (undulating lines) which results from the two-
phonon exchange.

density of states and α(ω) is the electron–phonon coupling averaged over directions in k space.
Electron tunnelling spectroscopy is used [7] to determine the three distinct Eliashberg functions
(α2 F)π−π , (α2 F)σ−σ , and (α2 F)π−σ . The authors consider the differential conductance of a
tunnel junction between MgB2 and In or Pb in superconducting state. With counter-electrodes
In in the superconducting phase the curves 1, 2 and 3 (figure 1) show only a small gap, while
the tiny bumps are considered as a 1% contribution of the large gap. The larger gap is well
seen in the case of tunnelling in the ab plane with counter-electrodes Pb in the superconducting
phase. In this case the authors do not comment on the tiny bumps at 10 mV (−10 mV) and the
fact that dI/dV increases near the 15 mV, which indicates the existence of new bump.

The double-gap structure is used to explain some of the unusual physical properties of
MgB2, such as the rapid rise of the specific heat coefficient C/T [8], tunnelling [4] and upper
critical field anisotropy [9]. Quite different methods of theoretical investigation, including
weak-coupling two-band BCS theory [10], the Eliashberg strong-coupling formalism [6],
and strong-coupling density-functional technique with explicit account for the Coulomb
repulsion [11], lead to astonishingly identical curves for the specific heat, as a function of
temperature. The calculations reproduce the different slopes, above 0.5Tc and below 0.25Tc,
which apparently result from the existence of two gaps, but cannot explain the shoulder between
them [8, 12]. Unexpected are the effects on the specific heat of Mg substitution by Al. The
changes are in rather poor agreement with those predicted by taking into account changes in
the electronic and phononic structure only [13].

A large B isotope effect is another argument in favour of phonon-mediated pairing [14, 15].
The isotope coefficient α is defined by the relation Tc ∝ M−α , where M is the mass of
the element. In BCS theory α = 0.5, and for metals like Hg, Pb and Zn the coefficient is
found experimentally to be close to 0.5. The isotope coefficient for MgB2 is α ≈ 0.32. The
density-functional calculations of the phonon spectrum and electron–phonon coupling in MgB2
predict that, in this compound, phonon modes of boron oscillations may have relatively high
frequencies, and that nonlinear coupling via two-phonon exchange is comparable to or even
larger than the linear coupling [5, 16]. Both effects may contribute to the anomalous isotope
effect coefficient [15], and to the significant increasing of the critical temperature Tc = 39 K.

Motivated by the theoretical and experimental findings I consider the theory of two-band
superconductors [17, 18] with two-phonon–electron interaction. The main goal is to study the
formation of coherent behaviour of Cooper pairs and electrons in the two-band superconductors
MgB2, as a result of a strong two-phonon–electron coupling. It is shown that spin- 1

2 triples
with zero angular momentum, made up of three spin- 1

2 fermions with charge e, are possible.
They are gapped Fermi excitations with the gap induced by the gaps of the single fermions.
Effectively one can represent them as gapped fermions and write an effective action. This
enables one to calculate the contribution of the triples to the thermodynamics of the MgB2
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superconductors. To reproduce the shoulder in the specific heat as a function of temperature,
one has to choose the gaps of the triples larger than the gaps of the incipient electrons.

The paper is organized as follows. In section 2 the formation of triples and their
contribution to the specific heat is explored. A summary in section 3 concludes this paper. The
tunnelling experiments are debated as a most direct way to observe the triples experimentally.

2. Triples in two-band superconductors with nonlinear electron–phonon coupling

I consider the theory of two-band superconductors [17, 18] with two-phonon electron
interaction. An important consequence of this interaction is the effective six-fermion
interaction. One can obtain it from the triangle diagram (figure 1) with three phonon lines
(undulating lines). There are two fermion species in the theory; therefore the low frequency
and low momenta limit of the diagram lead to an effective local six-fermion term. The effective
Hamiltonian H f 6 of the six-fermion interaction has the form

H f 6 = −
∑

�σ

λ�

∫
d3x c†

�↑(x)c†
�↓(x)c†

−�σ (x)c−�σ (x)c�↓(x)c�↑(x) (1)

where c†
�σ (x) and c�σ (x) are creation and annihilation operators for fermions, with orbital index

� (� = 1, 2,−� = 2, 1) and spin projection σ (σ =↑,↓)1.
The BCS Hamiltonian of the theory of two-band superconductivity is [17, 18]

HBCS = −
∑

�

g�

∫
d3x c†

�↑(x)c†
�↓(x)c�↓(x)c�↑(x) − g3

×
∫

d3x
∑

�

c†
�↑(x)c†

�↓(x)c−�↓(x)c−�↑(x). (2)

The partition function can be written as a path integral over the Grassmann functions of
the Matsubara time τ c†

�σ (τ, x) and c�σ (τ, x):

Z(β) =
∫

Dµ
(

c†c
)

e−S . (3)

The action is given by the expressions

S = S0 +
∫ β

0
dτ Hint(τ ) (4)

S0 =
∫ β

0
dτ

∫
d3x

∑

�

c†
�σ (τ, x) [∂τ + ε�(∇)] c�σ (τ, x) (5)

where β is the inverse temperature and ε�(∇) is the dispersion of the band � fermion. The
Hamiltonian Hint(τ ) is a sum of the BCS Hamiltonian (2) and the six-fermion Hamiltonian (1).
It is obtained from equations (1) and (2) by replacing the operators with Grassmann functions.

Let us introduce two spin- 1
2 Fermi collective fields (triples) ζ�σ (τ, x)(ζ

†
�σ (τ, x)) by means

of the Hubbard–Stratanovich transformation of the six-fermion term (1):

e−H f 6 =
∫

Dµ(ζ †ζ ) exp

{
−

∫
d4x

∑

�

λ�

[
ζ

†
�σ (x)ζ�σ (x) + c†

�↑(x)c†
�↓(x)c†

−�σ (x)ζ�σ (x)

+ ζ
†
�σ (x)c−�σ (x)c�↓(x)c�↑(x)

]}
(6)

where x = (τ, x) and
∫ β

0 dτ
∫

d3x = ∫
d4x .

1 After some algebra the term can be rewritten in the form
∑

�

∫
d3x n�(x)n�(x)n−�(x) where n�(x) =

∑
σ c†

�σ (x)c�σ (x).
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(a)

(b)

Figure 2. Two loop diagrams which represent the leading order of: (a) ���
σσ ′ , (b) ��

σσ ′ and 
��
σσ ′ .

The effective action of the triples is defined by the equality

e−Seff(ζ
†,ζ ) = exp

{
−

∫
d4x

∑

�σ

λ�ζ
†
�σ (x)ζ�σ (x)

}

×
〈

exp

{
−

∫
d4x

∑

�σ

λ�

[
c†
�↑(x)c†

�↓(x)c†
−�σ (x)ζ�σ (x)

+ ζ
†
�σ (x)c−�σ (x)c�↓(x)c�↑(x)

]
}〉

(7)

with

〈Q〉 =
∫

Dµ (c†, c)Qe−S0−HBCS . (8)

The quadratic part of the effective action Seff(ζ
†, ζ ) has the form

Seff =
∫

d4x d4y
[
ζ

†
�σ (x)���′

σσ ′(x − y)ζ�′σ ′(y) + ζ
†
�σ (x)��′

σσ ′(x − y)ζ
†
�′σ ′(y)

+ ζ�σ (x)
��′
σσ ′(x − y)ζ�′σ ′(y)

]
(9)

where

���′
σσ ′(x − y) = δ�,�′δσσ ′λ�δ

4(x − y) − λ�λ�′ 〈c−�σ (x)c�↓(x)c�↑(x)c†
�′↑(y)c†

�′↓(y)c†
−�′σ ′(y)〉

(10)

��′
σσ ′(x − y) = λ�λ�′

2
〈c−�σ (x)c�↓(x)c�↑(x)c−�′σ ′(y)c�′↓(y)c�′↑(y)〉 (11)


��′
σσ ′(x − y) = λ�λ�′

2
〈c†

�↑(x)c†
�↓(x)c†

−�σ (x)c†
�′↑(y)c†

�′↓(y)c†
−�′σ ′(y)〉. (12)

In theory, with the Hamiltonian HBCS (2) the off-diagonal elements are zero: ���′
σσ ′ = 0,

��′
σσ ′ = 0 and 

��′
σσ ′ = 0 if � 	= �′. The diagonal functions are calculated in leading order

represented by the diagrams (figure 2). In the case of ���
σσ ′ (figure 2(a)), two lines of the

diagram (solid lines) correspond to the normal Green function of fermions with one and just the
same band-index, while the third line (dashed line) corresponds to the normal Green function

of a fermion with different band-index. The diagrams for ��
σσ ′ and 

��

σσ ′ (figure 2(b)) have
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two lines (solid lines) corresponding to the anomalous Green functions of fermions with equal
band-index and one line (dashed line) which corresponds to the anomalous Green function of
a fermion with different band-index.

The system of gap equations in the theory of two-band superconductivity has the
form [17, 18]

�1 = g1

2

∫
d3 p

tanh(
β
2 E1p)

E1p
�1 + g3

2

∫
d3 p

tanh(
β
2 E2p)

E2p
�2

�2 = g3

2

∫
d3 p

tanh(
β
2 E1p)

E1p
�1 + g2

2

∫
d3 p

tanh(
β
2 E2p)

E2p
�2

(13)

with E�p =
√

ε2
�p + |�2

�|, where ε�p is the �-band fermion dispersion. The system of gap

equations shows that the gaps �� can be chosen real. Then the normal and anomalous Green
functions in two-band theory, calculated in the standard way, have the form [19]

S�
↑↑(ω, p) = S�

↓↓(ω, p) = − iω + ε�p

ω2 + ε2
�p + �2

�

(14)

F�(ω, p) = F†
� (ω, p) = ��

ω2 + ε2
�p + �2

�

. (15)

I calculate the diagrams in the low-frequency limit:

���
σσ ′(ω, p) = δσσ ′

[
−iωZ−1

� (p) + ε̂�(p)
]

(16)

��↓↑(0, p) = 
��

↑↓(0, p) = �(p). (17)

The result is

Z−1
� (p) =

∫ 3∏

i=1

d3 pi

(2π)3

(2π)3δ3(p1 + p2 + p3 − p)

4E−�p1 E�p2 E�p3(E−�p1 + E�p2 + E�p3)

× [
E−�p1 E�p2 E�p3 + E−�p1ε�p2ε�p3 + ε−�p1 E�p2ε�p3 + ε−�p1ε�p2 E�p3

]
(18)

ε̂�(p) = 1

λ�

+
∫ 3∏

i=1

d3 pi

(2π)3

(2π)3δ3(p1 + p2 + p3 − p)

4E−�p1 E�p2 E�p3(E−�p1 + E�p2 + E�p3)

× [
ε−�p1ε�p2ε�p3 + ε−�p1 E�p2 E�p3 + E−�p1ε�p2 E�p3 + E−�p1 E�p2ε�p3

]
(19)

�(p) = 1

2

∫ 3∏

i=1

d3 pi

(2π)3

�2
��−�(2π)3δ3(p1 + p2 + p3 − p)

4E−�p1 E�p2 E�p3(E−�p1 + E�p2 + E�p3)
. (20)

The equations

ε̂�( p̃ f �) = 0 (21)

define the Fermi surface of the triples. Using the approximate expressions for Z�(p) and �(p)

Z�(p) 
 Z�(p f �) = Z�, �(p) 
 �(p f �), (22)

and rescaling the triples’ fields

Z− 1
2 ζ

†
�σ (ω, p) → ζ

†
�σ (ω, p), (23)

Z− 1
2 ζ�σ (ω, p) → ζ�σ (ω, p) (24)
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Figure 3. The heat capacity coefficient π2

m1 p f 1
√

2π

C
T = γ̃ as a function of T

�1
for �2

�1
= 3,

�1
�1

=
4,

�2
�1

= 5 and m1 p f 1 
 m2 p f 2 
 m̃1 p̃ f 1 
 m̃2 p̃ f 2.

one obtains the effective action of the triples

Seff =
∫ β

0
dτ

∑

p

{
ζ

†
�σ (τ, p) (∂τ + ε̃�(p)) ζ�σ (τ, p) + ��

[
ζ

†
�↑(τ, p)ζ

†
�↓(τ,−p)

+ ζ�↓(τ,−p)ζ�↑(τ, p)
]}

(25)

with ε̃�(p) = Z�ε̂�(p) and �� = Z��(p f �). Near the Fermi surface ε̃�(p) 
 p̃ f �

m̃�
(p − p f �),

where m̃� are the triples’ masses.
The effective action (25) shows that the triples are spin- 1

2 Fermi excitations with gap
�� induced by the gaps of the single fermion excitations (20). Next one diagonalizes
the effective Hamiltonian using a Bogoliubov transformation, and rewrites it in terms of

Bogoliubov excitations with dispersion Ẽ�(p) =
√

ε̃2
�(p) + �2

� . This enables us to calculate
the contribution of triples to the thermodynamics of superconductors. In particular the low
temperature behaviour of the heat capacity is

Cs =
∑

�



m� p f �

π2

√
2π�5

�

T 3
e− ��

T + m̃� p̃ f �

π2

√
2πρ5

�

T 3
e− ρ�

T



 (26)

where the first terms come from the single fermion contribution, while the other terms are
the triples’ contributions. Recent experiments, including photoemission [20] and tunnelling
experiments [3, 21], show that the ratio of the single fermions’ gaps is 2.6 � �2/�1 � 3.5.

The low temperature behaviour of the heat capacity coefficient π2

m1 p f 1
√

2π

C
T = γ̃ is depicted as

a function of T
�1

in figure 3 for �2
�1

= 3,
�1
�1

= 4,
�2
�1

= 5 and m1 p f 1 
 m2 p f 2 
 m̃1 p̃ f 1 

m̃2 p̃ f 2. The curve is in a good agreement with the experimental one for MgB2 [8, 12, 13].

3. Summary

In summary, new types of excitations, triples—made up of three spin- 1
2 fermions, are predicted

in the theory of two-band superconductivity with additional six-fermion interaction. They can
be thought of as a bound-state of an s-type Cooper pair of fermions from one of the bands and
a fermion from the other one with zero angular momentum. The triples are gapped excitations
with the gap induced by the single fermion gaps. It is important to emphasize that the triples
result from the nonlinear two-phonon–electron interaction.
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Figure 4. Six-fermion interaction obtained from the linear phonon–electron coupling.

Commonly the bound-state problem is studied by means of Bethe–Salpeter equations. In
the present case, these are equations for the six-fermion Green functions 〈cccc†c†c†〉, 〈cccccc〉
and 〈c†c†c†c†c†c†〉 with kernels given by diagrams in figure 1. The path integral calculations
used in the paper are equivalent to the so-called ladder approximation for the Bethe–Salpeter
equations. Since the kernels are in a local approximation, the ladder diagrams look like
sausages with elements the diagrams given in figure 2. The solution of the Bethe–Salpeter
equations is the sum over the infinite many ladder diagrams. I solve the problem by means of
the path integral and Hubbard–Stratanovich transformation. It is important to stress that the
anomalous Green functions 〈cccccc〉 and 〈c†c†c†c†c†c†〉 are non-zero in the superconducting
phase only. The normal Green functions 〈cccc†c†c†〉 are non-zero even in the normal phase but
the pole structure exists in the superconducting phase. One can specify this from equation (18)
by setting the gaps equal to zero. Then Z−1

� = ∞; hence the residues of the poles Z� are
zero. This means that triples exist only in the superconducting phase. This is why the triples
are thought of as bound states of Cooper pairs and single electrons.

One can consider excitations made up of more than three spin- 1
2 fermions while studying

diagrams with more than three vertices. Due to the Pauli principle these excitations have
non-zero angular momentum. The specific form of the fermion interactions determines the
symmetry of these excitations. They in turn result from the nonlinear two-phonon–fermion
interaction. Therefore knowledge of the nonlinear phonon interaction is crucial for the
development of a theory of excitations made up of more than three fermions. The excitations
with non-zero angular momentum have nodes, which lead to the anomalous temperature
dependence of the specific heat. This anomaly is not observed and I do not consider these
excitations.

The same is true for triples made up of fermions from one band. They have non-zero
angular momentum too, and the symmetry of the triples results from the nonlinear two-phonon–
fermion interaction.

The six-fermion interaction (1) can be alternatively obtained from the linear phonon–
electron coupling. The leading order diagram is depicted in figure 4. Since my investigation
is based on the assumption that nonlinear coupling via two-phonon exchange is comparable to
or even larger than the linear coupling [5, 16], the contribution of the linear phonon–electron
coupling (figure 4) is a small perturbation to the contribution of the nonlinear phonon–electron
interaction and one can drop it.

It is easy to see from the formula for the heat capacity (26) that the contribution of the
triples is decisive in explaining the shoulder-like part of the curve.

The most promising way to observe the triples in MgB2 is by tunnelling experiments. It
is evident that the contribution of the triples to the tunnelling current is with much smaller
weight than those of the single electrons. Therefore, we can observe the triples only at very low
temperature. If one considers the differential conductance of a tunnel junction with counter-
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electrodes in the superconducting state, for example In, or Pb as in [7], two new peaks should
emerge when the temperature decreases. Tunnelling experiments achieved below 1 K can
answer the question about the existence or non-existence of the triples.
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